Abstract

Nerium oleander L (Apocynaceae) is commonly known as ‘kaner’ and the plant is toxic. It is used for treatment of heart diseases, respiratory problems, cancer and aids. In the present study we have evaluated the Anti-microbial activity of Nerium oleander stem extracts on wistar strain albino rats. All the extracts showed good activity against all the bacteria used. Preliminary chemical studies of the plant reveal the presence of flavanoids which are responsible for the anti microbial activity of the plant. Extracts showed potent anti microbial activity against Pseudomonas auregnosa and B.Subtilis. Ethanol extract of the plant is more potent than any other extract and is active against all the bacteria tested. None of the experiment showed any of the activity against any fungus tested.

Keywords: - Nerium oleander,kaner,Pseudomomas auregnosa.

Introduction

Nerium oleander L (Apocynaceae) is commonly known as ‘kaner’ and the flowers are showy, sweet-scented, and double petaled, pink in colour. Despite its well-recognized toxic potential this plant is being used as folklore medicine throughout the world. In ethno botanical literature it is mentioned to be effective in the treatment of cardiac illnesses, asthma, corns, cancer & epilepsy[1,2] and also used as diuretic [3]. In ancient India it is regarded as Nighantu ratnakar which relieves headache and overcomes the ill effect of Vata and Kapha. Most of the polysaccharides purified from oleander showed anti-tumor and immune-stimulating effects. The whole plant is said to have anticancer properties. Its various parts are reputed as therapeutic agents in the treatment of swellings, leprosy, eye and skin diseases. The plant has been used in the treatment of cardiac illness, asthma, diabetes mellitus, corns, scabies, cancer and epilepsy.[4]

Materials and Methods

Plant material

The Nerium oleander (Apocynaceae) stem was collected from the Karnal, India in June 2008. Botanical identification was confirmed by morphological characteristic from Raw Materials Herbarium and Museum, NISCAIR, DELHI with accession no.

Correspondence Address:
Kuldeep Singh
P.D.M. School of Pharmacy, Karsindhu- 126112 (India)
Ph:- 09466687093
Email:- kuldeepgju17@gmail.com.
For bacteria (pour plate method): Before it could solidify the agar medium was mixed with the test organisms (one day old subculture) and allowed to solidify.[10-12]

For fungi (spread plate method): Fungus was spread on the surface of solid agar medium with the help of an L shaped rod by streaking on the solidified agar plates. Then the wells were made in solidified agar plates with the help of sterile glass borer of size 8 mm and capacity 2 ml in solidified agar in such a way that overlapping of zone of inhibition does not occur. Plates were kept at room temperature for half an hour for diffusion of the sample into agar media. The organism-inoculated petridishes were then incubated as per requirement of micro-organisms. After the completion of incubation period, the zone of inhibition produced by the sample with different organisms in different plates was measured and recorded immediately.[8,10]

Statistical Analysis
The values of all the above methods are expressed as Mean ± SEM. Total variation in asset of data was estimated through one way analysis of variance (ANOVA) followed by Dunnett’s test. Values of P< 0.1 & P<0.05 were considered statistically significant.

Results and Discussion:
Antimicrobial activity of various extracts of stem part of Nerium oleander was studied by measuring the zone of inhibition formed around the agar well and the results are given in table no. 1. All the extracts showed good activity (Fig 1) against P. auregenosa and B. subtilis. Ethanol extract has activity against all the four microorganisms tested but have anti bacterial activity against M.leuteus only at higher concentration. Aqueous extract showed considerable activity only against P.auregenosa and B. subtilis. All extracts failed to show any activity against any of the fungi used. Thus the plant shows antimicrobial activity and can be a potent ingredient for herbal products

Fig: 1 antibacterial activity of ethanol extract against P. auregenosa (Where T= test, S= standard, C= positive control)

Bibliography:
7) Cleidson valgas, simon mechado et al., Brazilian journal of microbiology, 2007, 38:369-380
9) M.A Hussain and M.S Gorsi ; 2004; 3(2); 177-180.